Search Results

Applied Machine Learning Explainability Techniques

Download or Read eBook Applied Machine Learning Explainability Techniques PDF written by Aditya Bhattacharya and published by Packt Publishing Ltd. This book was released on 2022-07-29 with total page 306 pages. Available in PDF, EPUB and Kindle.
Applied Machine Learning Explainability Techniques
Author :
Publisher : Packt Publishing Ltd
Total Pages : 306
Release :
ISBN-10 : 9781803234168
ISBN-13 : 1803234164
Rating : 4/5 (68 Downloads)

Book Synopsis Applied Machine Learning Explainability Techniques by : Aditya Bhattacharya

Book excerpt: Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systems Key Features • Explore various explainability methods for designing robust and scalable explainable ML systems • Use XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problems • Design user-centric explainable ML systems using guidelines provided for industrial applications Book Description Explainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases. Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users. By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered. What you will learn • Explore various explanation methods and their evaluation criteria • Learn model explanation methods for structured and unstructured data • Apply data-centric XAI for practical problem-solving • Hands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and others • Discover industrial best practices for explainable ML systems • Use user-centric XAI to bring AI closer to non-technical end users • Address open challenges in XAI using the recommended guidelines Who this book is for This book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.


Applied Machine Learning Explainability Techniques Related Books

Applied Machine Learning
Language: en
Pages: 656
Authors: M. Gopal
Categories: Technology & Engineering
Type: BOOK - Published: 2019-06-05 - Publisher: McGraw-Hill Education

DOWNLOAD EBOOK

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlement
Applied Machine Learning
Language: en
Pages: 496
Authors: David Forsyth
Categories: Computers
Type: BOOK - Published: 2019-07-12 - Publisher: Springer

DOWNLOAD EBOOK

Machine learning methods are now an important tool for scientists, researchers, engineers and students in a wide range of areas. This book is written for people
Applied Machine Learning with Python
Language: en
Pages: 182
Authors: Andrea Giussani
Categories: Computers
Type: BOOK - Published: 2021 - Publisher:

DOWNLOAD EBOOK

Applied Machine Learning Explainability Techniques
Language: en
Pages: 306
Authors: Aditya Bhattacharya
Categories: Computers
Type: BOOK - Published: 2022-07-29 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML system
Applied Machine Learning Solutions with Python
Language: en
Pages: 418
Authors: Siddhanta Bhatta
Categories: Computers
Type: BOOK - Published: 2021-08-31 - Publisher: BPB Publications

DOWNLOAD EBOOK

A problem-focused guide for tackling industrial machine learning issues with methods and frameworks chosen by experts. KEY FEATURES ● Popular techniques for p
Scroll to top