CMOS Technology for IC Biosensor and Applications
Author | : Dr. Abdullah Tashtoush |
Publisher | : Xlibris Corporation |
Total Pages | : 292 |
Release | : 2013-07-23 |
ISBN-10 | : 9781483646022 |
ISBN-13 | : 1483646025 |
Rating | : 4/5 (22 Downloads) |
Book excerpt: About the Book The book includes a variety of techniques that are conducting biosensors as transducers. The single die has all of the biosensors implemented within it, which leads to a new generation of multibiosensors named as multi-labs-on-a-single chip (MLoC). Biosensors are analytical devices that combine a biologically sensitive element with a physical or chemical transducer to detect the presence of specific compounds selectively and quantitatively. This book explores the feasibility of microelectronic techniques in a successful attempt to get huge cost savings in mass production, fast reacting, and disposable biosensors. The book is lied in six chapters and four appendices. These sensors were implemented using CMOSP35 technology on a single-chip that covers new techniques for detecting biomedical and biological samples at low concentration level based on CMOS/MEMS technology batch process. The methodology of the proposed multibiosensors that is named by multi-lab-on-a-chip (MLoC); lies on miniaturizing transducers, which is based on optical CMOS technology, charge based capacitance measurements (CBCM), electrochemical impedance spectroscopy (EIS) and CMOS microcoils incorporating with interdigitated microelectrode array (IDMA). The aforementioned approaches technically proved their capability and reliability overwhelmingly among the used conventional techniques for that reason these techniques have been proposed to create compact and portable biosensors for sensitive and rapid detection of biomedical and biological samples. While the four proposed biosensors have common objectives they differ in the method and analysis used, and postulates engaged by a discipline to achieve the objectives; the inquiry of the principles of investigation in a particular field.