Search Results

Analytic Deformations of the Spectrum of a Family of Dirac Operators on an Odd-Dimensional Manifold with Boundary

Download or Read eBook Analytic Deformations of the Spectrum of a Family of Dirac Operators on an Odd-Dimensional Manifold with Boundary PDF written by Paul Kirk and published by American Mathematical Soc.. This book was released on 1996 with total page 73 pages. Available in PDF, EPUB and Kindle.
Analytic Deformations of the Spectrum of a Family of Dirac Operators on an Odd-Dimensional Manifold with Boundary
Author :
Publisher : American Mathematical Soc.
Total Pages : 73
Release :
ISBN-10 : 9780821805381
ISBN-13 : 082180538X
Rating : 4/5 (81 Downloads)

Book Synopsis Analytic Deformations of the Spectrum of a Family of Dirac Operators on an Odd-Dimensional Manifold with Boundary by : Paul Kirk

Book excerpt: The analytic perturbation theory for eigenvalues of Dirac operators on odd dimensional manifolds with boundary is described in terms of [italic]extended L2 eigenvectors [end italics] on manifolds with cylindrical ends. These are generalizations of the Atiyah-Patodi-Singer extended [italic capital]L2 kernel of a Dirac operator. We prove that they form a discrete set near zero and deform analytically, in contrast to [italic capital]L2 eigenvectors, which can be absorbed into the continuous spectrum under deformations when the tangential operator is not invertible. We show that the analytic deformation theory for extended [italic capital]L2 eigenvectors and Atiyah-Patodi-Singer eigenvectors coincides.


Analytic Deformations of the Spectrum of a Family of Dirac Operators on an Odd-Dimensional Manifold with Boundary Related Books

Scroll to top