Artificial Intelligence and Machine Learning - A Precise Book to Learn Basics
Author | : pc |
Publisher | : by Mocktime Publication |
Total Pages | : 61 |
Release | : |
ISBN-10 | : |
ISBN-13 | : |
Rating | : 4/5 ( Downloads) |
Book excerpt: Artificial Intelligence and Machine Learning - A Precise Book to Learn Basics Table of Contents 1. Introduction to Artificial Intelligence and Machine Learning 1.1 What is Artificial Intelligence? 1.2 The Evolution of Artificial Intelligence 1.3 What is Machine Learning? 1.4 How Machine Learning Differs from Traditional Programming 1.5 The Importance of Artificial Intelligence and Machine Learning 2. Foundations of Machine Learning 2.1 Supervised Learning 2.1.1 Linear Regression 2.1.2 Logistic Regression 2.1.3 Decision Trees 2.2 Unsupervised Learning 2.2.1 Clustering 2.2.2 Dimensionality Reduction 2.3 Reinforcement Learning 2.3.1 Markov Decision Process 2.3.2 Q-Learning 3. Neural Networks and Deep Learning 3.1 Introduction to Neural Networks 3.2 Artificial Neural Networks 3.2.1 The Perceptron 3.2.2 Multi-Layer Perceptron 3.3 Convolutional Neural Networks 3.4 Recurrent Neural Networks 3.5 Generative Adversarial Networks 4. Natural Language Processing 4.1 Introduction to Natural Language Processing 4.2 Preprocessing and Text Representation 4.3 Sentiment Analysis 4.4 Named Entity Recognition 4.5 Text Summarization 5. Computer Vision 5.1 Introduction to Computer Vision 5.2 Image Processing 5.3 Object Detection 5.4 Image Segmentation 5.5 Face Recognition 6. Reinforcement Learning Applications 6.1 Reinforcement Learning in Robotics 6.2 Reinforcement Learning in Games 6.3 Reinforcement Learning in Finance 6.4 Reinforcement Learning in Healthcare 7. Ethics and Social Implications of Artificial Intelligence 7.1 Bias in Artificial Intelligence 7.2 The Future of Work 7.3 Privacy and Security 7.4 The Impact of AI on Society 8. Machine Learning Infrastructure 8.1 Cloud Infrastructure for Machine Learning 8.2 Distributed Machine Learning 8.3 DevOps for Machine Learning 9. Machine Learning Tools 9.1 Introduction to Machine Learning Tools 9.2 Python Libraries for Machine Learning 9.3 TensorFlow 9.4 Keras 9.5 PyTorch 10. Building and Deploying Machine Learning Models 10.1 Building a Machine Learning Model 10.2 Hyperparameter Tuning 10.3 Model Evaluation 10.4 Deployment Considerations 11. Time Series Analysis and Forecasting 11.1 Introduction to Time Series Analysis 11.2 ARIMA 11.3 Exponential Smoothing 11.4 Deep Learning for Time Series 12. Bayesian Machine Learning 12.1 Introduction to Bayesian Machine Learning 12.2 Bayesian Regression 12.3 Bayesian Classification 12.4 Bayesian Model Averaging 13. Anomaly Detection 13.1 Introduction to Anomaly Detection 13.2 Unsupervised Anomaly Detection 13.3 Supervised Anomaly Detection 13.4 Deep Learning for Anomaly Detection 14. Machine Learning in Healthcare 14.1 Introduction to Machine Learning in Healthcare 14.2 Electronic Health Records 14.3 Medical Image Analysis 14.4 Personalized Medicine 15. Recommender Systems 15.1 Introduction to Recommender Systems 15.2 Collaborative Filtering 15.3 Content-Based Filtering 15.4 Hybrid Recommender Systems 16. Transfer Learning 16.1 Introduction to Transfer Learning 16.2 Fine-Tuning 16.3 Domain Adaptation 16.4 Multi-Task Learning 17. Deep Reinforcement Learning 17.1 Introduction to Deep Reinforcement Learning 17.2 Deep Q-Networks 17.3 Actor-Critic Methods 17.4 Deep Reinforcement Learning Applications 18. Adversarial Machine Learning 18.1 Introduction to Adversarial Machine Learning 18.2 Adversarial Attacks 18.3 Adversarial Defenses 18.4 Adversarial Machine Learning Applications 19. Quantum Machine Learning 19.1 Introduction to Quantum Computing 19.2 Quantum Machine Learning 19.3 Quantum Computing Hardware 19.4 Quantum Machine Learning Applications 20. Machine Learning in Cybersecurity 20.1 Introduction to Machine Learning in Cybersecurity 20.2 Intrusion Detection 20.3 Malware Detection 20.4 Network Traffic Analysis 21. Future Directions in Artificial Intelligence and Machine Learning 21.1 Reinforcement Learning in Real-World Applications 21.2 Explainable Artificial Intelligence 21.3 Quantum Machine Learning 21.4 Autonomous Systems 22. Conclusion 22.1 Summary 22.2 Key Takeaways 22.3 Future Directions 22.4 Call to Action