Brauer Groups, Hopf Algebras and Galois Theory
Author | : Stefaan Caenepeel |
Publisher | : Springer Science & Business Media |
Total Pages | : 516 |
Release | : 2002-03-31 |
ISBN-10 | : 1402003463 |
ISBN-13 | : 9781402003462 |
Rating | : 4/5 (63 Downloads) |
Book excerpt: This volume is devoted to the Brauer group of a commutative ring and related invariants. Part I presents a new self-contained exposition of the Brauer group of a commutative ring. Included is a systematic development of the theory of Grothendieck topologies and étale cohomology, and discussion of topics such as Gabber's theorem and the theory of Taylor's big Brauer group of algebras without a unit. Part II presents a systematic development of the Galois theory of Hopf algebras with special emphasis on the group of Galois objects of a cocommutative Hopf algebra. The development of the theory is carried out in such a way that the connection to the theory of the Brauer group in Part I is made clear. Recent developments are considered and examples are included. The Brauer-Long group of a Hopf algebra over a commutative ring is discussed in Part III. This provides a link between the first two parts of the volume and is the first time this topic has been discussed in a monograph. Audience: Researchers whose work involves group theory. The first two parts, in particular, can be recommended for supplementary, graduate course use.