Search Results

Particle Filters for Random Set Models

Download or Read eBook Particle Filters for Random Set Models PDF written by Branko Ristic and published by Springer Science & Business Media. This book was released on 2013-04-15 with total page 184 pages. Available in PDF, EPUB and Kindle.
Particle Filters for Random Set Models
Author :
Publisher : Springer Science & Business Media
Total Pages : 184
Release :
ISBN-10 : 9781461463160
ISBN-13 : 1461463165
Rating : 4/5 (60 Downloads)

Book Synopsis Particle Filters for Random Set Models by : Branko Ristic

Book excerpt: This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. Although the resulting algorithms, known as particle filters, have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.


Particle Filters for Random Set Models Related Books

Particle Filters for Random Set Models
Language: en
Pages: 184
Authors: Branko Ristic
Categories: Technology & Engineering
Type: BOOK - Published: 2013-04-15 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochas
Random Finite Sets for Robot Mapping & SLAM
Language: en
Pages: 161
Authors: John Stephen Mullane
Categories: Technology & Engineering
Type: BOOK - Published: 2011-05-19 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a
An Introduction to Sequential Monte Carlo
Language: en
Pages: 378
Authors: Nicolas Chopin
Categories: Mathematics
Type: BOOK - Published: 2020-10-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the se
Feynman-Kac Formulae
Language: en
Pages: 584
Authors: Pierre Del Moral
Categories: Mathematics
Type: BOOK - Published: 2004-03-30 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This text takes readers in a clear and progressive format from simple to recent and advanced topics in pure and applied probability such as contraction and anne
Bayesian Filtering and Smoothing
Language: en
Pages: 255
Authors: Simo Särkkä
Categories: Computers
Type: BOOK - Published: 2013-09-05 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Scroll to top